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Clinical Group 

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by neuronal 
cell death in the specifi c brain region like basal ganglia, cerebral cortex and hippocampus. Symptoms 
associated with PD patients are rigidity, akathesia, tremor, postural imbalance, cognitive and memory 
dysfunctions. Pathological hallmarks are dopaminergic neuronal degeneration, neuro-infl ammation, 
oxidative stress, free radical generation. In the typical Parkinson’s disease model, 6-Hydroxydopamine 
(6-OHDA) is delivered unilaterally by stereotactic injection into the SNc (substantia nigra pars-compacta) 
or the striatum mimics the PD symptoms. In addition, it has been shown that 6-OHDA is toxic to complex 
I & IV of the mitochondrial respiratory chain, leading to subsequent respiratory inhibition and further 
processed ATP depletion, oxidative stress and neuro-infl ammation. Forskolin (FSK), a diterpene natural 
plant phytochemical obtained from (Coleus Forskohli), a potent direct activator of adenyl cyclase (AC) 
enzyme which further activates cAMP/PKA/CREB pathway. FSK mediated activation of AC/cAMP/PKA/
CREB pathway is responsible for various neuroprotective mechanisms Based on important and versatile 
role of FSK, the present study has been designed to investigate the role of cAMP mediated CREB activation 
in 6-hydroxydopamine induced mitochondrial associated neurotoxicity in rats. Further the studies are 
extended to understand the disease pathogenesis and to investigate and discuss the various possible 
central mechanisms involved in the effect of such targets using behavioral paradigm and biochemical 
markers of neurodegeneration.
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Introduction

Parkinson disease (PD) is a neurodegenerative disease 
characterized by manifestations of motor defi cits such as 
tremors at rest, rigidity in muscles, akinesia and postural 
imbalance [1,2]. Brain pathology shows loss of neurons in the 
substantia nigra pars compacta (SNpc), with the presence of 
eosinophilic protein deposits (Lewy bodies) in the cytoplasm, 
and dopamine (DA) striatal depletion [3,4]. James Parkinson 
was fi rst to describe the clinical pathological features of this 
disease as “shaking palsy” in his classic 1817 monograph as 
“Involuntary tremulous motion, with lessened muscular power, in 
parts not in action and even when supported; with a propensity to 
bend the trunk forwards, and to pass from a walking to a running 
pace: the senses and intellects being uninjured” [5]. India with one 
of the world’s lowest incidence of PD (70 out of 100,000) [6]. 
Motor disabilities of PD associated with dopaminergic neuronal 
cell loss and resultant dysfunction of the basal ganglia (BG) 
where a cluster of deep nuclei that participate in the initiation 
and execution of movements [7]. Non-motor symptoms 

including impairments of memory and olfaction, disturbance 
sleep and neuropsychiatric manifestations like depression, 
hallucinations, and dementia become prominent, and these 
features are probably due to the spread of Parkinsonian 
pathology beyond the BG with the continued involvement of 
infl ammation and oxidative stress [8-10]. Several genes that 
also involved in the progression of PD, are -synuclein (SNCA), 
Parkin (PARK2), UCHL-1 (PARK5), DJ-1 (PARK7), PINK1 
(PARK6), LRRK2 (PARK8), NR4A2 (NURR1), PARK3, PARK4, 
PARK9, PARK10 and PARK11 [11]. 

Neuropathological feature of PD includes degeneration 
of brain stem nuclei & loss of dopaminergic neurons, 
abnormalities in mitochondrial complexes I to V cellular 
protein transport, interaction between SNCA proteins & protein 
aggregation, excitotoxicity, oxidative stress and depletion 
of striatal DA levels, cholinergic defi cit, presence of intra-
neuronal proteinacious cytoplasmic inclusions, termed “lewy 
bodies”, are the main cause of neuronal cell death in PD [12,13]. 
The output projections of the striatum have been divided into 
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a direct and an indirect pathway. The direct pathway projects 
from the striatum to the GPi (globus pallidus internal) and 
SNpr (substantia nigra pars reticulata) and from there to the 
thalamus. The indirect pathway projects from the striatum 
to the GPe (globus pallidus external), which in turn projects 
to the GPi and the SNpr, further terminates in the thalamus 
[14]. Decreased levels of DA results in increased activity along 
the indirect pathway and decreased activity along the direct 
pathway together result in increased excitation of GPi and SNPr 
neurons, then to increased inhibition of thalamic neurons, 
and fi nally to decreased excitation of the cortex [15-17]. The 
indirect pathway normally excites the output nuclei which is 
inhibited in PD [18,19].

In addition, mitochondrial free radical theory also explains 
the mechanistic basis of aging. Dysfunction of mitochondria 
is well known to generate reactive oxygen species (ROS), 
reduce adenosine-triphosphate (ATP) production, increased 
deoxyribonucleic acid (DNA) mutations as well as induces 
abnormal cristae structures and impairs intracellular calcium 
(Ca) levels ultimately affects neurons and accelerates 
neurodegenerative processes [20,21].

Furthermore, the link between oxidative stress and 
like dopaminergic neuronal degeneration, inhibition of 
mitochondrial complex I to V, lewy Bodies (LB) protein 
aggregation, neuro-infl ammation and defect in mitochondrial 
morphology & membrane potential is further supported by 
modeling the motor aspects of PD in animals with toxins that 
cause oxidative stress including 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), rotenone, 1,1’- dimethyl-4,4’-
bipyridinium dichloride (paraquat), and 6-hydroxydopamine 
(6-OHDA) [22-31]. The characterization of the hydroxylated 
analogue of DA i.e. 6-OHDA, a toxin inducing degeneration of 
dopaminergic neurons in the nigrostriatal region of brain [32]. 
The administration of 6-OHDA into the striatum of mice at a 
dose of 0.5 μl/min into the right striatum (0.9 mm anterior and 1.8 
mm lateral from bregma, 3.0 mm ventral from the dura) and in rat 
8μg/2μl in 0.1% ascorbic acid-saline (anterior-posterior 0.5 mm, 
lateral 2.5 mm, 5mm dorso-ventral from dura) mimics PD’s like 
behavioral and biochemical alterations [33, 34]. 6-OHDA inside 
dopaminergic neuron destroys the dopaminergic nigrostriatal 
pathway by inducing oxidative stress, which can lead to the 
induction of infl ammation, where neuro-infl ammation lead to 
over activation of glial cell ultimately cause neuronal cell death 
[35-37]. The unilateral intra-striatal injection of 6-OHDA 
in rodents induces pronounced behavioral dysfunctions like 
aphagia, adipsia, paradoxical kinesia, tremulous jaw movement, 
epileptic seizures and biochemical damage of glutamatergic, 
cholinergic, tryptaminergic, GABAergic, noradrenergic and 
adrenergic alternation in various brain region i.e is similar to 
same as in PD [38-42]. 

cAMP (cyclic adenosine monophsphate) system is closely 
involved in the regulation of brain-derived neurotrophic factor 
(BDNF) plays an important role in the neuronal survival, 
neuronal proliferation and differentiation, synaptic plasticity, 
improvement in learning & memory, reduce excitotoxic damage 
and prevent amyloid- (A) toxicity, inhibit apoptotic and 

necrotic cell death [43-51]. Further elevation of cAMP levels 
is known to restore the energy levels, enhance biosynthesis & 
release of neurotransmitters in cholinergic, -Adrenergic and 
dopaminergic neurons in specifi c brain regions like striatum, 
hypothalamus, nucleus basalis, substantia nigra (SN), locus 
ceruleus, dorsal raphe nucleus and dorsal vagal nucleus. 
Moreover, increase level of cAMP involved in the inhibition 
of apoptotic and necrotic cell death leads to improvement 
in cognitive functioning [52-61]. Elevation of cAMP is also 
responsible for both short and long-term enhancement in 
synaptic transmission and stimulates cholinergic cells to 
release acetylcholine in the proper initiation of memory 
formation [62-65].

Further, cAMP dependent CREB (cAMP responsive element 
binding protein) phosphorylation has too been reported to 
perform neuro-protective action such as long term memory 
potentiation (LTP), neuronal cell survival, proliferation, and 
differentiation in the developing brain, neuronal plasticity, 
regulate expression of neurotropic factors and anti-apoptotic 
genes, mitochondrial biogenesis, increase expression of BDNF, 
regulate levels of bcl-2, polysialylated neuronal cell adhesion 
molecule (PSA-NCAM), neuronal growth factor (NGF), cyclin 
D2 and controls the expression of both MeCP2 and miRNA 
participates in the neuronal morphogenesis, differentiation 
in response to neurotropic factor NGF, BDNF, FGF (fi broblast 
growth factor), IGF-1 (insulin like growth factor) and regulates 
cognitive defi cits [66-78]. However, agents that enhance 
cAMP/PKA/CREB pathways have potential for the prevention 
of stroke and various neurological disorders like Depression, 
Schizophrenia, Alzheimer’s and Huntington disease (HD) [79-
83]. Forskolin – FSK (Coleus Forskohlii, family Labiatae) used to 
treat heart and lung disease intestinal spasms, insomnia and 
convulsions [84-87]. FSK a labdane diterpenoid, is considered 
the active secondary metabolite because of its ability to directly 
activate the enzyme adenyl cyclase (AC) [88]. Recent research 
has shown that FSK has positive effects against a wide range 
of conditions such as asthma, glaucoma, hypertension, hair 
loss, cancer and obesity, cardiac remodeling and heart failure 
prevention, amelioration of mitochondrial dysfunction in 
cardiomyopathy, anti-platelet aggregation, hydrodynamic 
alterations in collecting tubule, anti-cystic fi brosis, diabetes, 
infl ammation, glaucoma, smooth muscle relaxation [89-102].

Moreover, FSK can potentiate the absolute inhibition of 
striatal AC mediated by D-2 dopamine receptors and found 
that a little change in the percent D-2 inhibition in the 
presence of FSK, suggesting that its effects on inhibitory 
guanine nucleotide-binding (cGMP) subunit were minimal 
[103]. As FSK, a direct activator of AC is responsible for the 
activation of cAMP-dependent protein kinase (PKA) mediated 
CREB performed neuro-protective functioning associate with 
mitochondrial dysfunctioning [104-106]. FSK, cAMP analogs, 
or neuropeptides effectively alleviated the mitochondrial 
neuronal impairment through PKA mediated CREB 
activation [107]. FSK at the dose of 10-20μM in-vitro induces 
phosphorylation of CREB results in increase in level of CREB, 
involved in the amelioration of mitochondrial dysfunctioning 
[108,109]. Indeed, recent studies reported the benefi cial effects 
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of natural AC activator Coleus Forskohlii (FSK), against various 
neurodegenerative abnormalities through the modulation of 
cAMP CREB, BDNF, Phosphoinositide 3-kinase (PI3K)/Akt and 
Mitogen-Activated Protein Kinase (ERK1/2) [90,110-113]. 

FSK has been shown to activate AC in various brain regions 
like striatum, concentrated in the hippocampus, cerebellum, 
neocortical areas and peripheral tissues [114-116]. Although the 
activation of FSK is commonly stated to be mediated primarily 
by a direct action on the catalytic subunit. A few reports 
suggest that its effects at the catalytic subunit may potentiate 
interactions of the catalytic subunit with the cAMP [88,117-
118]. In brain, FSK has been reported to elicit the most marked 
stimulation (-15-fold) of AC activity in the striatum, frontal 
cortex, hippocampus and in some cases in the middle temporal 
gyrus, and also localized in pituitary and spinal cord [119,120]. 
FSK at submaximal doses increases the potency, effi cacy, or 
both of the stimulatory hormones for AC in intact cells [121,122]. 
However, despite the signifi cantly greater stimulation by FSK in 
this brain region, little is known concerning the effects of FSK 
on the stimulation of striatal enzyme activity mediated by cAMP 
or D-1 3,4 dihydroxyphenylethylamine (DA) receptors[103]. 
cAMP, mediated signaling of several neurotransmitters 
including serotonin, acetylcholine, glutamate & DA, plays an 
important role in the memory & cognitive functioning [123-126]. 
The activation of the cAMP/PKA/CREB pathway signifi cantly 
inhibits infl ammatory cytokines like tumor necrosis factor- 
(TNF-), interleukins (IL-1, IL-6, and IL-8), i-NOS (inducible 
nitric oxide synthase), plasminogen activating factor (PAF), 
human basophils, mast cell degranulation and oxidative stress 
[127-131]. Mitochondrial dysfunctioning is associated with 
loss of ATP in the cell further leads to decrease in the level of 
cAMP which are implicated in various abnormalities [132]. This 
decrease in the level of cAMP could be overcome by the FSK 
administration [104]. Therefore, on the basis of above relative 
information the present review was designed to investigate 
the neuro-protective role of direct AC activator FSK through 
activation of cAMP/PKA mediated CREB pathway in 6-OHDA 
induced PD’s like symptoms in rats.

Parkinson disease (PD) 

PD, the most common movement disorder is characterized 
by a progressive loss of DA releasing neurons in the SNpc, 
resulting in slowness of movement, rigidity, and tremor 
as well as the death of neurons in catecholaminergic and 
cholinergic nucleus [133-135]. PD is typically considered to 
be a motor disorder ,through the clinical manifestations are 
highly variable.The etiology behind PD include excessive levels 
of SNCA, environmental toxicants and genetic factors leading 
to an atypically low number of dopaminergic neurons at birth 
and increased susceptibility to PD development [136,137]. The 
pathophysiology however is characterized by the degeneration 
of DA neuron in the SN, a region of the degeneration of the 
midbrain, and axon loss in the striatum, a region of the 
forebrain. The resulting DA defi ciency leads to dysfunction in 
the BG network [138]. Moreover, serotonergic, noradrenergic, 
and cholinergic cells are lost [139]. 

Prevalence of PD

Parkinson’s disease is the second most prevalent 
neurodegenerative disorder after Alzheimer’s disease and 
is anticipated to impose an increasing social and economic 
burden on society as populations continue to age [142-145]. 
A report by the National Parkinson Foundation (NPF) in the 
United States (US) suggested that PD affects an estimated four 
to six million worldwide [146]. In the UK, PD is estimated to 
affect 100–180 people per 100,000 of the population and has 
an annual incidence of 4-20 per 100,000 [147]. The incidence 
of the disease rises with increasing age .One in seven are 
diagnosed before 50 years of age, with a fi vefold increase in 
diagnosis in those aged over 65 [148,149]. India with one of the 
world’s lowest incidence of PD (70 out of 100,000) [6].

Genetics in PD

Over 20 loci and 15 disease-causing genes for Parkinsonism 
have been identifi ed [150]. Mutations in seven genes are 
robustly associated with autosomal dominant (SNCA, LRRK2, 
EIF4G1, VPS35) or recessive (parkin/ PARK2, PINK1, DJ1/
PARK7) PD.

SNCA

SNCA encodes a 140 amino acid synaptic vesicle-associated 
protein that regulates synaptic vesicle exocytosis [151]. SNCA 
was identifi ed as the main component of lewy bodies and lewy 
neurites in PD patients [152]. SNCA is a natively unfolded soluble 
protein that can aggregate to form oligomers or protofi brils, 
and eventually insoluble polymers or fi brils [153]. Oligomeric 
SNCA may mediate neurodegeneration by disrupting synaptic 
vesicles [154]. Mitochondrial dysfunction, axonal transport 
defi cits, and SNCA aggregation may participate in a self-
perpetuating cycle of neuron damage in PD [155]. 

Leucine-rich repeat kinase 2 (LRRK2)

 LRRK2 is a 2527 amino acid protein that contains functional 
kinase and guanosine triphosphate (GTP) as domains, and 
leucine-rich repeat and WD40 protein-interaction domains 
[156,157]. It is expressed throughout various brain regions, 
including SN, BG, cortex, hippocampus, and cerebellum 
[158,159]. Mutations in LRRK2 are the most common cause of 
familial PD and are linked to both autosomal dominant and 
sporadic forms [160].

Parkin (PARK2)

PARK2 acts as a regulator of protein breakdown [161]. 
Mutations in the parkin gene, which encodes for an E3 
ubiquitin ligase, are the leading cause of early-onset, 
autosomal recessive Parkinsonism [162-163]. Parkin levels in 
neurons are associated with protection from cellular stress 
and cell-cycle regulation [164]. PARK2 pathological effects on 
mitochondria were Decrease electron transport chain (ETC) 
enzyme activities, decreaseprotein levels of several subunits of 
complexes I and IVdecrease mitochondrial integrity, ubiquitin 
proteasome system (UPS) & autophagy lysosomal pathway 
(ALP) dysfunction [165-167]. 
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PTEN-induced putative kinase 1 (PINK1)

 PINK1 gene mutations represent the second most common 
cause of autosomal recessive PD. The gene encodes a 581-amino 
acid protein with a predicted N-terminal mitochondrial 
targeting sequence and a conserved serine/threonine kinase 
domain [168]. More than 40 PINK1 mutations have been 
identifi ed in PD patients [169]. 

 DJ-1 

Point mutations (L166P, D149A) in DJ-1 cause rare 
autosomal recessive PD with early onset. DJ-1 is a redox-
sensitive cytosolic chaperone protein that associates with 
mitochondria and the nucleus upon oxidation. Mutations cause 
a loss of function of DJ-1 by inducing instability of the dimeric, 
functional form of the protein, or lack of expression. Mutations 
also affect the serine protease activity of DJ-1, another crucial 
function of this protein [170]. DJ-1 seems to be an important 
redox-reactive signaling intermediate controlling oxidative 
stress associated with ischemia, neuroinfl ammation, and age-
related neurodegeneration [171]. 

Neuropsychological & neuropsychiatric as-
pects of PD

Psychiatric syndromes as well as cognitive impairment 
frequently complicate PD, a neurodegenerative disorder 
defi ned by its movement abnormalities.Development of 
psychopathology in PD is attributed to a number of factors, 
including underlying disease processes related to PD, 
medication effects, and psychological reactions to the illness 
[5].

Motor features

The hallmark clinical signs of PD are its motor triad: a pill-
rolling rest tremor, rigidity, bradykinesia/akinesia, internal 
tremor associated with anxiety, cramps, aches, pains, gait 
and postural disturbances with a loss of righting refl exes, un-
steadiness, imbalance and falls, sialorrhea, dysarthria, visual 
and genitourinary dysfunction, sleep disturbances, sweating, 
seborrhea, edema, constipation, paresthesias, fatigue, and a 
decreased sense of smell [172-175].

Cognitive Defi cits

The cognitive features of PD are present to varying degrees 
early in the course of the disease and are multifactorial in 
origin, involving subcortical–frontal dopaminergic systems 
as well as extra striatal systems [174,175]. The various forms 
of executive dysfunction, visuospatial impairment, memory 
impairment, and attention defi cits that occur in PD .The 
presence of a mood disorder, which can precede, accompany, 
or follow cognitive changes, may also confound assessment of 
cognitive impairment, intensify defi cits ,aphasia , apraxia, and 
memory defi cits [176-179] (Table 1).

Psychiatric complications

Common psychiatric disturbances observed in PD subjects 

include: depression, apathy (i.e., lack of motivation), anxiety, 
sleep disturbances, psychosis, cognitive impairment, and im-
pulse control disorders, with at least one neuropsychiatric 
symp tom being reported in over 60% of patients [180-182]. 
Furthermore, several clinical features of PD and depression 
overlap, altered appetite or sleep, weight change, loss of libido, 
memory impairment, low energy, lack of facial expression and 
psychomotor retardation. Sleep disorders, such as insomnia, 
hypersomnia (excessive daytime sleepiness), restless leg 
syndrome and rapid eye move ment sleep behaviour disorder 
(RBD), affect the majority of PD patients. Psy chosis manifests 
as hallucinations (visual, auditory or tactile), paranoid 
delusions or delirium [181,183-186].

Mood disturbances

Up to 90% of PD patients with idiopathic PD experience 
psychiatric complications, including major mood disorders 
(major depression, dysthymia, or bipolar disorder); adjustment 
disorders; disabling anxiety syndromes; drug-induced mood 
changes; pathological tearfulness; dementia; apathetic states; 
psychosis; or delirium [187]. 

Non-motor symptoms of PD

Recent reports in PD patients have confi rmed the existence 
of a variety of non-motor symptoms .These includes hyposmia 
(reported in 80% of the patients at the time of diagnosis), 
pain, cognitive defi cits (about 50%; defi cits in memory, 
attention, executive function and dementia are reported), sleep 
disturbances, rapid eye movement (REM) behavior change, 
constipation and urinary problems, depression (10 – 40 %), 
changes in aversion, fear and anxiety, compulsive behavior and 
lack of impulse control [33,188-191].

Pre-motor stages of PD

According to the Hoehn and Yahr scale for PD stages [192], 
PD patients go through fi ve stages:

Stage I: Very subtle, unilateral existence of one or more of 
the primary symptoms. 

Table 1: Symptom associated with dysfunctions in PD [177,178]

S.No. Sites Symptoms

01
Motor and 

sensory

Resting tremor, lead pipe rigidity,Slowness of 
movement,Expressionless face Soft monotonous voice 
,Festinant gait Loss of arm swing on walking,Restless 

legs syndrome 

02
Cardiovascular 

system
Orthostatic hypotension

03
Respiratory 

system
Restrictive ventilatory defect, Aspiration, Sleep apnoea, 

Respiratory dyskinesia

04 Gastro-intestinal 
Sialorrhoea and drooling ,Constipation ,Nausea (due to 
anti parkinsonian medication), Neurological dysphagia 

05 Genito- urinary Bladder disturbance, Sexual dysfunction

06 Musculoskeletal Muscle aches and cramps ,Flexion deformity of neck

07 Neuropsychiatric Depression ,Anxiety,Dementia ,Sleep disturbance

08 Dermatological Disordered sweating and oily skin ,Pressure sores
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Stage II: Bilateral primary symptoms and additional 
secondary symptoms. 

Stage III: Symptoms from stage two increases in severity, 
and problems with balance become prominent. At this 
stage, the   person with Parkinson’s is still independent. 

Stage IV: Motor symptoms result in disability, leading to 
the patient needing assistance in most daily activities. 

Stage V: Patient is bed or wheelchair bound and needs 
complete assistance. 

Neuropathology of PD

The pathology in PD is known to affect the central, 
peripheral, and the entric nervous systems [140]. It has been 
shown to cause substantial cytoskeletal alterations in various 
brain regions in a slow but persistent manner [42]. In addition 
to being a disorder of the DA projection system, glutamatergic, 
cholinergic, tryptaminergic, GABAergic, noradrenergic, and 
adrenergic damage has also been reported in PD [42,193]. 
Presence of lewy bodies, lewy neuritis, and dopaminergic 
degeneration are hallmarks of PD pathology, as was fi rst 
demonstrated by F. Lewy in 1912 [194]. Lewy bodies are protein 
aggregates that, among other proteins contain ubiquitin and 
SNCA. These can proteins be found in cell bodies and neurites 
of certain neuronal populations including hypothalamus, 
nucleus basalis, substantia nigra, locus ceruleus, dorsal raphe 
nucleus and dorsal vagal nucleus [195-199]. 

Structural alteration in PD

Basal ganglia: Parkinsonism is considered to result 
primarily from abnormalities of BG function.The BG include 
the neostriatum (caudate nucleus and putamen), the GPe, GPi, 
subthalamic nucleus (STN), and the SN with its SNpr and SNpc. 
They participate in anatomically and functionally segregated 
loops that involve specifi c thalamic and cortical areas. These 
parallel circuits are divided into ‘motor’, ‘associative’ and 
‘limbic’ loops, depending on the function of the cortical area 
involved [200-203]. Patterns of neuronal discharge within the 
basal ganglia are disturbed in PD [204]. The loss of DA in the 
SNpc increases the overall excitatory drive in the BG, disrupting 
voluntary motor control and causing the characteristic features 
of PD [205].

Striatum: The striatum, a part of the BG, which receives 
dopaminergic projections from the SN, is also signifi cantly 
impacted in PD [206,207]. The striatal damage is more severe 
in the putamen than in the caudate nucleus. The ventral 
tegmental area is affected to a lesser extent as compared to 
the SN [208]. The loss of DA in the nucleus accumbens is to 
a much lesser extent, and the dopaminergic neurons in the 
hypothalamus appear to be spared in PD [209]. The association 
of SNCA and mitochondria was especially signifi cant in PD-
vulnerable brain regions that are SNpc and striatum [210].

Cerebral cortex: Decreased dopaminergic input to the 
striatum from the SNpc in PD results in a complex alteration in 
activity between input and output stations of the BG. Decreased 

levels of DA result in increased activity along the indirect 
pathway and decreased activity along the direct pathway, 
which together result in increased excitation of GPi and SNpr 
neurons, then to increased inhibition of thalamic neurons, and 
fi nally to decreased excitation of the cortex. [16-17]. 

Mechanism of PD pathogenesis

The fi rst link between mitochondria and PD came with 
the identifi cation of the defi ciency of mitochondrial ETC 
(electron transport chain) protein complex I activity in SN 
from patients with PD [211-213]. The role of mitochondria in 
the pathogenesis of PD has been enhanced by the subsequent 
identifi cation of mutations in genes encoding mitochondrial 
proteins like PINK1, DJ1, and parkin, environmental agents, 
increased intracellular Ca2+, free radical–mediated damage 
to proteins, lipids, and DNA in SN of PD patients [214-217]. 
A defect of mitochondrial respiratory chain activity results in 
impaired oxidative phosphorylation and an increase in free 
radical generation and thus will affect UPS function by both 
limiting activity and increasing the substrate load of oxidized 
protein. (Figure 1) [218]. 

Oxidative stress & PD

The extensive production of ROS in the brain may provide 
an explanation for the magnitude of the role that these reactive 
molecules play in PD. The brain consumes about 20% of the 
oxygen supply of the body, and a signifi cant portion of that 
oxygen is converted to ROS [219]. ROS can be generated in 
the brain from several sources, both in neurons and glia, with 
the ETC being the major contributor at the mitochondrial 
level, monoamine oxidase (MAO), NADPH oxidase (NOX) and 
other fl avo-enzymes along with nitric oxide (NO) [219-221].
Oxidative stress have been found not only in brain tissues but 
also in peripheral tissues of individuals affected by PD, mild 
cognitive impairment (MCI) and other degenerative diseases, 
including HD, Alzheimer’s disease (AD), amyotrophic lateral 
sclerosis (ALS), and others [222]. 

Mitochondrial dysfunction & PD

ROS 
PROD
UCTIO

N 
LIPID 

PEROX

INTRAV MITOC

ATP  
NEURO

Figure 1: Intraventricular injection of 6-OHDA inducing neurotoxic effect in 
mitochondrial respiratory chain (ETC).
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Within the mitochondria, ROS is produced at several 

sites along the ETC, coupled with a process called oxidative 

phosphorylation via complex V i.e. ATP synthase. Direct and 

imprecise interactions of reduced nicotinamide adenosine 

dineucleotide phosphate (NADH) /reduced fl aiv adenosine 

dineucleotide phosphate (FADH) derived electrons with 

molecular oxygen or any other electron acceptors lead to 

generation of ROS [22,223]. Major complexes of ETC indulged 

in generation of ROS include complex I and complex-III 

[224]. Figure 1 shows a schematic diagram of the fl ow of 

electrons across the ETC and the major sites involved in ROS 

production. Interestingly, uncoupling proteins (UCP) present 

in mitochondrial membranes have been found to minimize 

the generation of excessive ROS by leaking the protons inside 

mitochondria from the cytoplasm, thereby reducing the overall 

membrane potential [225]. Though mitochondria have been 

found to be the major contributors target site of cellular ROS, 

oxidative stress, infl ammatory mediators and Ca2+ overload is 

the pathological hallmark for mitochondrial dysfunctioning 

[226]. The amount of ROS present inside a cell has phenomenal 

physiological signifi cance. Increased levels of ROS lead to 

cellular damage and reduced levels result in impairment of 

various signaling pathways essential for cellular proliferation 

and operation of host defense mechanisms [227-228]. 

Therefore, a delicate balance between the levels of oxidants 

and antioxidants is essential to maintain the optimum levels 

of ROS [229]. An effi cient antioxidant defense system which 

includes enzymes such as superoxide dismutase (SOD), catalase 

(CAT), total glutathione (GPx) and glutathione reductase (GRd) 

ensures the optimal level of cellular ROS and any imbalance or 

impairment in this system results in oxidative stress and its 

subsequent consequences (Figure 2) [230].

Excitotoxicity and PD

The concept of excitotoxicity has also been applied to PD. 
various studies have demonstrated that Parkin regulates the 
function and stability of excitatory glutamatergic synapses 
[231,232]. Postsynaptic expression of Parkin dampens 
excitatory synaptic transmission and causes a marked 
loss of excitatory synapses in hippocampal neurons [233]. 
Conversely, knockdown of endogenous Parkin or expression 
of PD-linked Parkin mutants profoundly enhances synaptic 
effi cacy and triggers a proliferation of glutamatergic synapses. 
This proliferation is associated with increased vulnerability 
to synaptic excitotoxicity [234]. The resulting excessive 
glutamatergic drive could be a source of excitotoxicity in the 
nigra and activation of NMDA receptor increases intracellular 
Ca2+ levels [12]. A role for elevated intracellular Ca2+ in the events 
leading to cell death in PD is supported by the observation that 
dopaminergic neurons expressing the Ca2+-binding protein 
calbindin may be selectively preserved in PD [235].

Neuro-infl ammation and PD

In PD One of the fi rst features of the infl ammatory-
associated modifi cations was the unregulated expression of 
major histocompatibility complex (MHC) molecules [236]. 
Whether a microglia T-cell dialogue exists and is important for 
local amplifi cation of the proinfl ammatory immune response 
in PD remains to be determined [237]. Another main feature 
of infl ammatory-related processes in PD is a marked increase 
in cytokine levels in the striatum and cerebrospinal fl uid 
(CSF) of Parkinsonian patients compared with control subjects 
[238]. These include proinfl ammatory cytokines (TNF-, IL-
1, IL-6), T-cell activation–associated cytokine (IL-2), anti-
infl ammatory cytokine (IL-4), and several growth factors 
like endothelial growth factor (EGF), transforming growth 

Figure 2: Mechanisms of selective neuronal vulnerability in PD.
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factor alpha (TGF-), -FGF, transforming growth factor 
beta1 (TGF-1) [239,240]. Because an increase in the level 
of cytokines was specifi c to the nigrostriatal pathway and is 
not observed in cortical regions, it has been suggested that 
cytokine production may be strictly confi ned to the sites of 
injury [241,242]. Cytokine-induced dopaminergic cell death 
may involve more direct cytotoxic mechanisms through direct 
activation of cytokine receptors localized on dopaminergic 
neurons and coupled to intracellular death–related signaling 
pathways [240].

Apoptosis/caspases & PD

A pathogenic role for apoptosis in PD is supported by 
fi ndings of activated caspase-3, 8 and 9 and higher activities 
of caspases-1 and 3 in dopaminergic SN neurons in PD brain 
[241,242]. 

An oxidative mechanism for neuronal apoptosis has 
been suggested to involve ROS generation, inhibition of 
mitochondrial complex I activity, and caspase-3 activation, 
overexpression of mutant SNCA in association with elevated 
8-hydroxyguanine, protein carbonyls, lipid peroxidation and 
3-nitrotyrosine, consistent with oxidative stress [243-247] 
(Figure 2). 

Neurochemistry of PD

DA in PD

There are two distinct populations of DA receptors, which 
differentially regulate second messenger pathways in the 
striatum. D1 receptor activation leads to stimulation of AC, the 
enzyme responsible for the synthesis of cAMP. D2 receptor 
activation inhibits AC, which results in decreased synthesis 
of cAMP. Levels of cAMP regulate the activity of cAMP/PKA, 
which plays an important role in cell phosphorylation events 
such as ion channel modulation and regulation of gene 
expression (Figure 3) [248,249]. DA differentially regulates the 
direct and indirect pathways. The direct and indirect pathways 
work together to balance the motor control wielded by the BG. 
While the direct pathway facilitates movement by means of 
decreases in tonic inhibition of BG output and disinhibition 
of thalamocortical and brainstem pathways, the indirect 
pathway suppresses movement by increasing the inhibitory 
BG output to the thalamus [58,59]. DA fi bers have therefore 
an inhibitory action on the striatal GABAergic/enkephalinergic 
cells projecting to the GPe, but an excitatory action on the 
GABAergic/substance-P (SP) containing neurons projecting 
directly to the GPi (and the SNPr) [250-252]. 

GABA in PD

Gamma-aminobutyric acid (GABA), a putative inhibitory 
neurotransmitter, is distributed throughout the brain and 
spinal cord [253]. GABA is the main inhibitory neurotransmitter 
within the central, peripheral and enterinal nervous systems 
[254,255]. Recent studies indicate a possible diagnostic value 
of plasma glial cell derived neurotropic factor (GDNF) levels 
in depression, but whether GDNF and related Ca2+/GABA 
mechanisms may play prominent role in the development and 

progression of PD-related depression is unclear at the moment 
[256]. SNpc DAergic efferents project to GABAergic cells in 
the striatum these conections can be excitatory & inbihitory 
mediated by D1 & D2 DA receptors respectively. DAergic neuron 
loss in the SNpc cause the net inhibition thalmic output to the 
cortex through both the direct and indirect pathway of the 
BG, are parrallel pathway from the striatum to the BG output 
nuclei-GPi & SNpr that mediate thalmocortical activity. The 
direct pathway normaly provides inhibition to the output 
nuclei which is disinhibited in PD as well as indirect pathway 
normally excits the output nuclei also disturbed in PD [18,19].

Glutamate in PD

Glutamate is also the predominant excitatory 
neurotransmitter in the BG, is the seat of the motor defi cits seen 
in PD [257]. In addition to sending glutamatergic projections 
to the striatum, the cortex also sends projections to the STN, 
thalamus, and SNpc, in addition to other nuclei in the brainstem 
and spinal cord. The SNpc receives further glutamatergic 
innervation from the STN in the indirect basal ganglia pathway. 
Evidence has supported that the dopaminergic projection 
from the SNpc to various nuclei in the BG circuit exerts an 
important regulatory function on the fi ring pattern of certain 
glutamatergic pathways (Figure 4) [258]. Glutamate release 
can be regulated by GABA receptors located on corticostriatal 
terminals activation of these receptors exerts a signifi cant 
inhibitory effect [259]. Glutamate systems are extensively 
distributed throughout the brain and have been implicated 
in the central control of many physiological functions. As 
a consequence, disturbance in glutamatergic activity may 
underlie many psychological and neurodegenerative disorders 
including AD, HD, ALS, AIDS dementia complex, and PD 
[260]. Excessive stimulation of glutamate receptors can 
have numerous detrimental effects such as Ca2+ homeostasis 
dysfunction, increased NO production, activation of proteases, 
an increase in cytotoxic transcription factors, and increased 
free radicals [261]. Glutamate receptor over-stimulation 
leads to excessive infl ux of Ca2+ (and Na+) through glutamate 
receptor-gated ion channels, followed passively by movements 

 

Figure 3: CREB molecular pathway.
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of chloride (Cl-) and water. It causes postsynaptic neurons to be 
overloaded by extracellular Ca2+ and Na+ as well as intracellular 
Ca2+ via release from mitochondria. The resulting combination 
of increased intracellular volume and Ca2+ overload induces 
various lethal metabolic derangements, internal organelle 
swelling, and plasma membrane failure leads to necrosis [262]. 

Acetylcholine in PD

Ach is a prominent neurotransmitter of the peripheral 
and the central nervous system (CNS). In the CNS, Ach is 
involved in attention, learning, memory, consciousness, sleep, 
and control of voluntary movements [263]. In the brain, ACh 
mediates distant signaling through projection neurons and 
local signaling via interneurons; the type of message conveyed 
by Ach depends on a variety of factors, including site of release, 
the localization of the target neurons, the target receptor 
subtypes, and the status of the target cells at the time of release 
[264]. Furthermore, Ach signaling may be circumscribed to 
the synapse or result from the delocalized diffusion of the 
neurotransmitter in the extracellular milieu and binding to 
nonsynaptic sites [265,266]. Among brain structures, the 
striatum contains some of the highest levels of Ach and DA. 
The two neurotransmitter systems interact extensively in a 
bidirectional manner, both at the presynaptic and postsynaptic 
levels, mediating cognitive mechanisms, the selection of motor 
responses, and reward [267,268]. In a recent study in 137 PD 
patients, cholinergic denervation could be related to REM 
behavior disorder, fall history, gait disorders, and cognitive 
dysfunction [269].

Adenosine receptors in PD

Adenosine receptors have a unique cellular and regional 
distribution in the BG and are particularly concentrated in 
caudate, putamen and the GP areas, which are richly innervated 
by DA [270]. In the BG, A2A receptors are prevalently and 
selectively localised in dendrites, dendritic spines and axons 
of GABAergic neurons of the indirect pathway projecting 
from the caudate putamen to the GPe [271,272]. Adenosine 

infl uences striatal output pathways known to be involved in 
motor symptoms and the onset of dyskinesia in PD. Therefore, 
inhibition of A2A receptors seems to be a potential target for 
neuroprotection in PD [273,274]. Indeed, in rodent models 
of PD, A2A antagonism exerts Anti-parkinsonian actions 
[272,275,276]. The highest expression of adenosine A2A 
receptors is found in the BG, particularly in the corpus striatum, 
which is involved in controlling complex motor activities by 
specifi c motivational stimuli as well as in habit formation 
[277]. Evidence for presynaptic localization of A1 receptors on 
DA axons is indirect, with confi rmed absence of A2A receptors 
[271,278-281]. Nevertheless, both regulate striatal DA release, 
likely indirectly, with inhibition by A1-receptor activation and 
enhancement by A2A receptors activation [282-284].

Cannabinoid receptors in PD

Cannabinoids mainly act through two types of receptors, CB1 
(present in CNS and to a lesser extent in the peripheral nervous 
system) and CB2 (present outside the CNS, preferentially in 
the immune system). The hypokinetic effect associated with 
the activation of CB1 receptors located in different neuronal 
subpopulations within the BG [285]. It is reasonable to expect 
that the cannabinoid signaling system, and particularly this 
receptor type, would experience an up regulatory response 
in PD or other hypokinetic disorders [286]. A therapy with 
cannabinoids in PD would imply the use of CB1 receptor 
antagonists for the alleviation of motor inhibition but also the 
use of different types of cannabinoids, preferably antioxidant 
cannabinoids, for the control of disease progression [285,287-
289].

Neuropeptides in PD

Neuropeptides are found in many mammalian CNS neurons 
where they play key roles in modulating neuronal activity 
[290]. Other peptides such as neuropeptide Y (NPY) are 
synthesized throughout the brain, and neurons that synthesize 
the peptide in one region have no anatomical or functional 
connection with NPY neurons in other brain regions [291]. 
Neuropeptides are thought to modulate the excitability of 
dopaminergic neurons in the extrapyramidal system [206,292]. 
NPY-medulla; neuronal loss was found in PD patient. Damage 
to multiple neuronal systems causing complex biochemical 
changes and pathophysiological disturbances may represent 
the basis for the variable clinical picture of PD including motor, 
vegetative, behavioral, and cognitive dysfunctions, depression, 
pharmacotoxic psychoses, and other symptoms that usually 
increase with progressive stages of the disease [293,294].

SP and Enkephalin (Enk) in PD

SP that is highly concentrated in SN and the inner 
pallidum and neurons of the ponto mesencephalic tegmentum 
have an excitatory effect on dopaminergic neurons [58]. 
The PD brains shows a 30-40% decrease in SP in SN and 
pallidum without essential changes in cortex, hippocampus, 
striatum, and hypothalamus [295]. There is reduction of SP-
immonoreactivity in SN or pallidum was observed in PD, AD, 
and Guam-PDC but signifi cant reduction of SP was observed 

Figure 4: Dopaminergic SNpc neuron showing the molecular targets for the various 
agents used to induce animal models of PD.
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immunoreactivity in GPi, in SNpr and SNpc, and in the NBM in 
PD [206,290,296,297].

Animal models for PD 

Mitochondrial complex I and IV toxin PD models (6-
OHDA)

The characterization of the hydroxylated analogue of DA, 
6-OHDA, as a toxin-inducing degeneration of dopaminergic 
neurons in the nigro-striatal tract has led to it being a widely 
used tool to induce Parkinsonism in rodents [32,34, 35, 298]. 
6-OHDA is injected into the nigro-striatal tract at one of 
three locations: into the SNpc where the A9 dopaminergic cell 
bodies are located; into the median forebrain bundle (mfb), 
through which the dopaminergic nigro-striatal tract ascends; 
or into the terminal region, the striatum [299-301]. Current 
understanding behind 6-OHDA mechanism is that, once 
inside dopaminergic neurons, 6-OHDA initiates degeneration 
through a combination of oxidative stress and mitochondrial 
respiratory dysfunction [32,302]. Certainly, 6-OHDA readily 
oxidizes to form ROS, to reduce striatal levels of antioxidant 
enzymes, elevate levels of iron in the SN and to interact directly 
with complexes I and IV of the mitochondrial respiratory 
chain, leading to subsequent respiratory inhibition [35,303-
306] (Figure 5). The 6-OHDA model also mimics many of the 
biochemical features of PD, including reduced levels of striatal 
DA and tyrosine hydroxylase (TH; rate-limiting step of DA 
biosynthesis), increased fi ring of the STN parallely increase 
in glutamate levels and fi ring within the BG output regions 
(entopeduncular nucleus and SNpr) , elevated striatal Enk levels 
or depressed striatal SP and dynorphin levels , increased fi ring 
in the GPi in PD patients and Parkin-containing aggregate 
formation in 6-OHDA-lesioned rat (Figure 6). [307-316].

(Complex I: NADH dehydrogenase; Complex III: Cytochrome 
bc1 or cytochrome c reductase; Complex IV: Cytochrome c oxidase; 
Complex V: ATP synthase)

6-OHDA activates infl ammatory features including NF-B-
mediated responses accompanied by inhibition of antioxidant 
systems regulated by Nrf2, TNF-, complement component 
1q subcomponent- binding protein, increases the expression 
levels of neuroinfl ammation markers such as TNF-, IL-

1b, and IL-6 and in astrocytes increases pro-infl ammatory 
cytokine TNF-, nitric oxide synthease (iNOS) and NO, cyclo-
oxygenase-2 (COX-2), and PGE2 [244,317-319]. 

(That exhibit nigro-striatal tract degeneration. *Indicates those 
agents that are administered directly into the brain; all other agents 
are delivered systemically. Maneb is believed to inhibit complex III of 
the mitochondrial respiratory chain, whilst the other mitochondrial 
toxins mainly inhibit complex I. This activity leads to the generation 
of ROS or reduced ATP production, which lead to apoptosis and the 
cells demise. 6-OHDA and MPP+ may also induce the production 
of ROS directly within the cytoplasm. LPS-activates microglial cells 
to stimulate the release of infl ammatory mediators, which in turn 
produce reactive nitrogen species (RNS). Inhibition of proteasome 
activity allows a build up damaged proteins that through DNA 
damage (not shown for clarity), and other processes can lead to 
cell death. Cell death is most likely apoptotic in nature, though this 
remains controversial for some agents)

Cyclic Nucleotides 

The cyclic nucleotides 3-5-cAMP and 3-5-cyclic GMP are 
diffusible intracellular second messengers that act as critical 
modulators of neuronal function [320]. cAMP is generated 
in response to binding of a number of neurotransmitters to 
G-protein coupled receptors (GPCRs) and subsequent activation 
of AC [321]. Serotonin, adrenergic, dopaminergic, adenosine, 
vasoactive intestinal peptide, muscarinic, GABA, and opioid 
receptors, among others, signal through the cAMP cascade 
via specifi c heterotrimeric G proteins [322]. Through these 
effectors cAMP controls a bewildering number of neuronal 
functions, ranging from regulation of ion channel activity and, 
consequently, neuronal excitability, to cell volume control 
and axon guidance; from metabolism and transcription to 
neurotransmitter release and learning and memory formation 
[323].

Cyclic adenosine monophosphate (cAMP)

cAMP is synthesized from ATP by AC located on the inner side 
of the plasma membrane and anchored at various locations in 
the interior of the cell [324]. The brain contains a large number 
of different GPCRs. Each individual neuron can express at its Figure 5: Coleus forskohlii whole plant and powder.

 

Figure 6: Role of CREB in neuronal functioning.
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plasma membrane a number of these receptors, each of which 
will generate a cAMP signal upon binding to its ligand [322]. 
In addition, glutamatergic stimulation can generate both cAMP 
and cGMP signals in response to Ca2+ infl ux [325]. The second 
messenger concept of signaling was developed with the fi nding 
of cAMP and its ability to infl uence metabolism, cell shape and 
gene transcription (via reversible protein phosphorylations) 
[326]. cAMP exerts an important role as second messenger 
molecule controlling multiple cellular processes in the brain 
[327]. Elevation of cAMP causes both short and long-term 
increase in synaptic strength and stimulates cholinergic cells 
to release Ach [63-65,328]. However, the levels of cAMP 
are reported to be decreased in neuropath logical conditions 
[50,329]. Further, cAMP dependent CREB phosphorylation has 
too been reported to induce LTP by the action of an enzyme 
AC in response to a variety of extracellular signals such as 
hormones, growth factors and neurotransmitters [66,67, 330]. 
cAMP controls a bewildering number of neuronal functions 
ranging from regulation of ion channel activity , neuronal 
excitability, control cell volume and axon guidance ; from 
metabolism and transcription to neurotransmitter release, 
regulate BDNF , improve learning and memory, restore energy 
levels, reduce excitotoxic damage, prevent A toxicity ,inhibit 
apoptotic and necrotic cell death, regulate synaptic effi cacy 
[43,48-51,63,328,331-334]. Furthermore, cAMP/PKA signaling 
pathway seems to play a role in the fi nal phases of memory 
consolidation, which requires protein synthesis [66,335].

cAMP response element binding protein (CREB)

CREB activation 

CREB is one of the most well-characterized transcription 
factors in learning and memory [66]. It was originally described 
due to its association with the cAMP response element (CRE) 
DNA sequence, and widely expressed throughout the brain, 
playing a critical role in plasticity in many brain regions, 
including hippocampus [336,337]. CREB increases the 
synaptic availability of DA and induces many DA dependent 
adaptive responses culminating in the transcription of striatal 
CRE-1 dependent genes, such as the immediate early gene 
c-and the neuropeptides dynorphin, SP, and Enk’s. CREB 
phosphorylation, initially thought to be mediated exclusively 
by the cAMP/PKA pathway, is also induced by Ca2+ -dependent 
signal transduction pathways [338]. Two members of the Ca2+ 

/calmodulin-dependent kinase family (CaMK), CaMKII and 
CaMKIV, are activated by Ca2+ entry through an L-type voltage-
sensitive Ca2+ channel or glutamate N-methyl-D-aspartic acid 
(NMDA) receptors and induce CREB phosphorylation [339-
342]. There are a number of signaling cascades upstream of 
CREB phosphorylation, such as the cAMP/PKA, CaMKII and IV) 
[68,336]. 

Cyclic nucleotide mediated CREB activation. GDP: Guanosine 
diphosphate, GTP : Guanosine Triphosphate, AC : Adenylyl Cyclase, 
GC: Guanylyl cyclase, ATP : Adenosine Triphosphate, cAMP : Cyclic 
Adenosine monophosphate, 5 AMP :5 Adenosine monophosphate, 
PDE : Phosphodiesterase, cGMP : Cyclic Guanosine monophosphate, 
5 GMP : 5 Guanosine monophosphate, EPAC: Exchange protein 
activated cAMP, ERK : Extracellular signal- regulated Kinase, PKA : 

Protein Kinase A, PKG : Protein Kinase G, CREB : Cyclic AMP Response 
element binding Protein, BDNF : Brain Derived Neurotrophic Factor, 
NGF : Nerve Growth Factor. 

These cascades are activated by stress, infl ammatory 
cytokine MAPK or PI3)/Akt pathways, growth factor/
receptor tyrosine kinase activity (Ras/Erk/RSK2 pathway), 
and phospholipase C (PLC)-PKC signaling [68,343]. All these 
cascades have been shown to induce CREB phosphorylation 
[331,344] (Figure 3). CREB phosphorylation is facilitated by 
membrane-bound NMDA receptors, the non-receptor tyrosine 
protein kinase c-Src, fi broblast growth factor receptor1 
(FGFR1), and estrogen receptors, all of which are part of distinct 
intracellular cascades [345-348]. The molecules involved 
in the modulation of CREB phosphorylation include several 
neurotransmitters DA, glutamate, serotonin, GABA, growth 
factors like IGF-1; vascular endothelial growth factor, VEGF), 
and neurotrophins BDNF [68]. However, CREB also regulated 
by multiple signaling cascades downstream of neuronal 
activity, including cAMP and Ca2+ (Figure 3) [349].

Role of CREB in neuronal functioning

CREB regulates a wide range of neuroprotective processes, 
including the expression of trophic factors, antiapoptotic 
genes, detoxifying enzymes, mitochondrial biogenesis, as 
a regulator of cell survival, proliferation, and differentiation 
in the developing brain, whereas its roles in the adult brain 
include learning, memory, neuronal plasticity [68-70,350,351]. 
Among the molecules related to adult neurogenesis that are 
also affected by CREB signaling, BDNF expression, prolactin 
release, bcl-2 activation, PSA-NCAM, NGF, cyclin D2, MeCP2 
and miRNA-132, participates in neuronal morphogenesis, 
and regulates cognitive capacity [71-78,319,352]. A number of 
more recent studies have demonstrated that CREB is the main 
element underlying the conversion of short term memory 
(STM) to long term memory (LTM) [353-355]. In addition, 
some neuropsychiatric or neurodegenerative diseases such 
as depression, schizophrenia, HD and AD are associated with 
memory loss. In this regard, CREB has been postulated to 
change the sensitivity of the nucleus accumbens to rewarding 
and aversive drugs [80-83,356,357]. Moreover CREB modulates 
adult neurogenesis through the control of other adult 
neurogenesis regulators such as neurotransmitters, steroid 
hormones, or cytokines (Figure 6) [358]. 

Forskolin

Biological source

FSK, a labdane diterpene, is a major active compound 
isolated from tuberous roots of Coleus forskohlii Briq. (Labiatae) 
(Figure 5) [359]. C. forskohlii has been used as an important folk 
medicine in India. Futher, FSK has been found to be a potent 
activator of AC, leading to an increase in levels of c-AMP 
dependent PKA mediated CREB activation [360]. The presence 
of yellowish to reddish brown cytoplasmic vesicles in cork cells 
of C. forskohlii tubers is unique character of this plant and these 
vesicles store contains secondary metabolites i.e. FSK [361]. It 
grows wild in arid and semi-arid regions of India, Nepal and 
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Thailand and the plant is found mostly on the dry and barren 
hills [362].

Ethnopharmacological profi le of FSK

 The genus Coleus of the family Lamiaceae (Labiatae) 
comprises a number of herbaceous medicinal plants which are 
particularly employed in home remedies for various ailments. 
Three species are most popular and commonly cultivated. They 
are Coleus aromaticus, C. vettiveroides and C. forkoshlii.long 
slender raceme [363]. Fruits are orbicular or ovoid nutlets. 
The leaves are useful cephalgia, otalgia, anorexia, dyspepsia, 
fl atulence, colic, diarrhoea and cholera especially in children, 
halitosis, convulsions, epilepsy, cough, chronic asthma,high 
cough, bochitis, renal and vesical calculi, strangury, 
hepatopathy, malarial fever, antispasmodic and cathartic 
[87,364,365]. The whole plant is useful in hyperpiesia, vitiated 
conditions of pitta, burning sensation, strangury, leprosy, skin 
diseases, leucoderma, fever, vomiting, diarrhoea, and ulcers 
and as hair tonic [302,366,367]. FSK is also used as a condiment 
in India and the tubers are prepared as pickle and eaten [368]. 
The roots are used in treatment of worms, festering boils, and 
eczema and skin infections [369,370,371]. The leaves are bitter, 
acrid, thermogenic, aromatic, anodyne, appetizing, digestive, 
carminative, stomachic, anthelmintic, constipating, deodorant, 
expectorant, lithontriptic, diuretic and liver tonic [363,372,373].
Coleus forskohlii has been used to treat hypertension, congestive 
heart failure, eczema, colic, respiratory disorders, painful 
urination, insomnia, and convulsions. Clinical studies of 
the plant and the FSK constituent support these traditional 
uses, but also indicate that it may have therapeutic benefi t in 
asthma, angina, psoriasis, and prevention of cancer metastases 
[87,302,363]. In traditional Indian systems of medicine, the 
roots of Coleus forskohlii are used as a tonic as well as used for 
veterinary purposes [374]. FSK is also used in the preparation 
of medicines preventing hair greying and restoring grey hair to 
its normal colour [375] Forskolin is also a potent vasodilatory, 
hypotensive and inotropic agent [117].

Pharmacokinetic profi le

FSK ability to inhibit platelet aggregation is of additional 
benefi t in cardiovascular disease [376,377]. FSK also 
demonstrates a direct effect on cerebrovascular vasodilatation 
via cAMP activation [378]. Asthma and other allergic conditions 
are characterized by decreased cAMP levels in bronchial smooth 
muscle, as well as high levels of plasminogen activating factor. 
In response to allergenic stimuli, mast cells degranulate, 
histamine is released, and bronchial smooth muscle contracts. 
FSK activation of cAMP inhibits human basophil and mast 
cell degranulation, resulting in subsequent bronchodilation 
[131]. Research has demonstrated aerosolized dry FSK powder 
results in signifi cant relaxation of bronchial muscles and relief 
of asthma symptoms [379,380]. In one randomized, double-
blind, placebo-controlled trial, 16 asthma patients were given 
a single inhaled (aerosolized) 10-mg dose of dry FSK powder, 
an asthma medication (0.4 mg fenoterol), or placebo [380]. The 
ability of FSK to regulate cAMP levels in skin cells has been 
shown to have therapeutic benefi t for sufferers of psoriasis 
[87]. A signifi cant decrease in intraocular pressure (IOP) in 

rabbits, monkeys, and humans administered a topical FSK 
suspension (1% FSK). This effect was present at one hour post 
application and remained signifi cant for at least fi ve hours 
[381]. In vitro and animal studies demonstrate lipolysis in fat 
cells is stimulated by FSK via activation of AC and increased 
levels of cAMP antioxidant status of different parts of Coleus 
forskohlii including roots, stem, leaves and tubers shows the 
activities of SOD, peroxidase, polyphenol oxidase and CAT were 
signifi cantly higher (P < 0.05) in tubers than in the leaves, 
roots and stem [369,382]

Pharmacological action of FSK (Table 2)

FSK and Brain

FSK Binding sites

There is increasing evidence of neurotropic effects of 
FSK. Specifi c binding sites for FSK have been shown in rat 
brain membranes and visualized by quantitative in vitro 
autoradiography in rat CNS [397,398]. FSK exhibits marked 
stimulatory effects on striatal AC activity [88]. Direct binding 
studies with a suitable, labelled derivative of FSK may be 
useful in determining the site of its action. Accordingly [3H] 
14,15-dihydroforskolin as a ligand of binding sites in membranes 
of rat liver and rat brain [399]. 14,15-Dihydroforskolin has been 
reported to activate AC, FSK binds in frontal cortex as well as in 
hippocampus and in some cases in the middle temporal gyrus, 
striatum and also localized in pituitary and spinal cord [400]. 
High densities of binding sites were observed, particularly in 
the limbic system and the basal ganglia [119,120]. The highest 
density of binding was in the corpus striatum, in which AC is 
particularly sensitive to stimulation by FSK [103].

Role of FSK in brain 

Several co-activators that infl uenced the DAergic 
differentiation have been reported. These co-activators 
are DA, cAMP, phorbol 12-myristate 13-acetate (TPA), 
isobutylmethylxanthine (IBMX) and FSK [401,402]. The 
percentage of DAergic neurons in the present conditions indeed 
needs to be modulated to further increase the DAergic neuron 
population, however FSK plays the co-activator role on growth 
factors and these extrinsic cues may be crucially effective 
in promoting the differentiation of a DAergic phenotype in 
human-derived NPCs [403].

GPCR and FSK

DA signaling is mediated by two major classes of DA 
receptors. D1 type receptors activate AC through coupling to Gs/
Golf G-proteins whereas D2 type receptors inhibit AC through 
Gi/Go G-proteins [404-406]. AC, the mutual target of both D1 
and D2 like receptor signaling pathways, is a membrane bound 
protein which catalyzes the conversion of ATP to cAMP. The 
patterns of alteration of AC and the regional selectivity are both 
of particular interest. In the midbrain plus brainstem, nicotine 
initially enhanced basal AC activity; inferences about the 
underlying mechanism for this alteration can be drawn from 
the fact that FSK stimulation of AC was also increased. FSK also 
suggests that neuroprotective effects through the activation of 
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Table 2: Various pharmacological action of FSK

S. No P’cological Activity Mechanism of action Dose & route Ref. No.

01. Cardiovascular system Cardiac remodelling
and Heart Failure prevention

Amelioration of Mitochondrial dysfunction in 
cardiomyopa-thy
Antihypertensive

10 μm/l,  in-vitro
(Cardiomyocytes)

5 μM,  in-vitro
(mice ventricular myocytes)

0.1,0.3,1mg/kg p.o. in dogs, cats, rabbits, and rats

[94]

[95]

[91]

02. Haematopoietic 
system

Reduction in the extent of platelet aggregation
Induced a partial deaggregation of ADP- or 

collagen-aggregated human platelets
Inhibition of human neutrophil degranulation

Anti-Histaminic activit

2.5μM-100μm,
in-vitro(human blood platelet)

0.1mM/I, in-vitro
(human blood platelet)

50-75μM,
in-vitro(Human neutrophil

[96]

[383]

[384]

03. Central nervous 
system

Huntington’s disease

Alzheimer’s disease

Antidepressant

Antistress activity

10, 20, 30mg/kg, p.o. in rat
(3-nitroproponic acid)

in-vitro (Normal and Alzheimer’s Disease Human Fibroblasts cells) 5μM, 
in-vitro

(human pluripotent stem cells)
0.01-0.1mg/kg, p.o.in rat(forced swimming method)

25,50,100mg/kg p.o(in-vivo) in mice
(Elevated plus maze test,Forced swim)

[87]

[384,385]

[386]

[387]
[388]

04. Gastro-intestinal 
system

Infl ammatory bowel disease (IBD) 10 μm mucosal and serosal in vitro [92]

05. Cancer Metastases block platelet aggregation via its
Stimulation of platelet adenylate cyclase and 

increase of intracellular cAMP.
Enhances Protein phosphatase-2A (PP2A) activity 

in leukemia cells

82/μg forskolin to mice 30-60 minutes prior to injection with a highly 
metastatic melanoma

40μM, in-vitro
(human PCa cell lines)

[92]

[95]

06. Eye Intraocular pressure and open angle glaucoma, 
and was branded as Ocufors®

Retinal ischemic injury via upregulation of 
phosphoinositide 3-kinase (PI3K)/Akt pathway

0.15% w/v intravitreal administration
0.6–6 nmol/eye   intravitreal administration

[101]

[389]

07. Endocrine system Downregulation of the renal parathyroid hormone 
(PTH)‘-via cAMP

increase intracellular cAMP, which, together with 
the increase in ATP, enhance the priming of insulin 

granules

0.1,1,10μm in chicken kidney slices

10μM, in-vitro in rat

[390]

[391]

08. Renal system Hydrodynamic alterations in collecting tubule 50μM, in-vitro
(rabbit cortical collecting tubules)

[97]

09. Urinary system Uterine smooth muscle relaxant 20μM, in-vitro
(uterus smooth muscle)

[392]

10. Hepatic system Hepatoprotective activity through Regeneration 
of hepatocytes, normalization of infl ammatory 

hepatic and necrosis

500mg/kg,
Intra-gastrically (i.g.)

10_7 mol/L
in–vitro

(cell culture of bile duct)

[393]

[394]

11. Anti-infl ammatory 
activity

Reduction in the level of Interleukin-1β, 6 and 8

Inhibit mast cell degranulation

0.5μg/kg/min (Intra-operative)

10μm,
in-vitro

(human mast cell culture media)

[100]

[395]

12. Respiratory system Asthma (dose range 7-10μ M.)in vitro & in vivo(ovalbuminsensitized guinea pigs, 
intravenously and intraduodenally administered forskolin signifi cantly 

reduced the bronchospasm
due to aerosol administration of ovalbumin

[396]

AC mediated cAMP activation are obtained in the presence of 
Gs [407].

Acetylcholine and FSK

The increase in the level of acetylcholinesterase (AChE) 
in FSK treated cells could be also an indirect effect of cAMP. 

cAMP is a second messenger and modulates a plethora of 

other factors within the cell [20,408-410]. The release of Ach 

from the presynaptic nerve terminal of nicotinic synapses 

and subsequent binding to recognition sites located on the 

subunits of the Ach receptor-ion channel complex (AchR) 

results in conformational changes of the AchR which yield 
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channel opening [411]. A widely accepted hypothesis is that 
subunit phosphorylation, in particular that induced by cAMP-
dependent PKA, desensitizes nicotinic acetylcholinesterase 
(nAChR) [412-414]. The direct action of FSK on nAChRs was 
demonstrated by exposing patch-membrane nAChRs to 
FSK, which inhibits channel activity possibly through non-
competitive mechanisms [415]. The indirect action of FSK 
on nAChR was proven by applying FSK to the non-patch 
membrane, after the gigaseal were formed, and by observing 
a decrease in the activity of nAChR-channels. This indirect 
action was most likely mediated by cytosolic mechanisms, 
namely the cAMP/PKA pathway and can be attributed to nAChR 
phosphorylation [88,414].

Neuroprotective action of FSK

FSK against mitochondrial dysfunctioning

Mitochondrial dysfunctioning is associated with loss of 
ATP in the cell, further leads to decrease in the level of cAMP. 
This decrease in the level of cAMP could be overcome by FSK 
induction [232]. As FSK is a direct activator of AC is responsible 
for activation of cAMP leads to PKA activation further leads 
to CREB activation and performs neuroprotective functioning 
associate with mitochondrial dysfunctioning [104,416].

FSK against Neuro-infl ammation 

FSK has other properties as well, including inhibition of 
the pro-infl ammatory substance known as platelet-activating 
factor (PAF) [417]. Infl ammatory related processes in PD are a 
marked increase in cytokine levels in the striatum and CSF of 
parkinsonian patients [238]. Because an increase in the level of 
cytokines was specifi c to the nigrostriatal pathway and is not 
observed in cortical regions, it has been suggested that cytokine 
production may be strictly confi ned to the sites of injury. 
In support of this idea, the density of glial cells expressing 
proinfl ammatory cytokines, including TNF-, IL-1 and 
IFN-, also was elevated in the SNpc of PD patients [241,242]. 
Administered a water soluble derivative of FSK (colforsin; 
0.5μg/kg/min), they showed a reduced infl ammatory response 
[100]. Recent studies have shown that FSK had an antagonistic 
effect on TNF-, and it reduced the levels of IL-1, 6, and 8 
[418].

FSK against Neuro-oxidation

ROS can be generated in the brain from several sources, 
both in neurons and glial cell with in the ETC, major contributor 
at the mitochondrial level [220,221]. Other ROS sources 
include MAO, NOX and other fl avo-enzymes along with NO, 
is abundant in the brain due to the presence of NOS [219]. FSK 
which is responsible for activation of cAMP mediated CREB, is 
when pretreated at a dose of 5μM, in-vitro and is able to inhibit 
expression of inducible nitric oxide synthase via inhibiting the 
mitogen activated protein kinase (MAPK) in C6 cells [419]. 
Chronic administration of FSK may induce a change in the 
balance of cAMP in response to glucose, which could enhance 
insulin release. This may be another mechanism for reducing 
glucotoxicity, in addition to the reduction of oxidative stress 
[420].

FSK and Cognitive dysfunctions

The various forms of executive dysfunction, visuospatial 
impairment, memory impairment, and attention defi cits 
that occur in PD can render patients less able to accomplish 
familiar tasks or make them feel overwhelmed in situations 
that were not previously challenging [421,422]. The presence 
of a mood disorder which can precede, accompany or follow 
cognitive changes may also confound assessment of cognitive 
impairment and intensify defi cits [142,177]. Like most mental 
disorders, cognitive disorders are caused by a variety of factors. 
Some are due to hormonal imbalances in the womb, others to 
genetic predisposition and still others to environmental factors 
[423]. FSK 5 mg/kg, i.p. is able to activating cAMP/CREB in the 
hippocampal region responsible for memory improvement 
[424]. Moreover FSK 50 μM direct potentiates synaptic 
response and induced LTP [425,426].

Possible involvement of FSK in 6-OHDA in-
duced PD

Summarizing the whole information given above, FSK 
confi rmed a versatile role in PD where it activates the AC/
cAMP mediated PKA/CREB activation (Figure 7) Moreover, on 
other side FSK act as a coactivator in brain that follows the GS 

pathway through the activation of D1 receptor. There is least 
availability of selective AC activation and so far only limited 
reports suggest benefi cial effect of FSK in neurodegeneration 
animal model. 

Thus, combined with all information given above on the 
basis of review and research papers, it was fi rst effort by us to 
explore the restorative and symptomatic profi le of FSK through 
the activation of cAMP/PKA/CREB pathway in 6-OHDA induced 
neurotoxic PD’s like behavioral and biochemical parameters in 
rats.

Conclusion

Thus in conclusion neuroprotective and neurorestoration 
effects of FSK may be due to favorable modulation of CREB 

Figure 7: Neuroprotective strategies & therapeutic implication of FSK through AC/
cAMP/PKA/CREB pathway activation.
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mediated signaling and direct D1 activation in the striatum. The 
involvement of cAMP/PKA/CREB pathway, anti-oxidant, anti-
infl ammatory and neuro-modulatory effect of test drug FSK 
may be the possible mechanisms at least in part underlying the 
observed effects. 

Based on important and versatile role of cAMP/PKA/CREB 
signaling in regulation of neuronal functioning, essential 
to investigate the role of cAMP mediated CREB activation in 
6-OHDA induced experimental PD in rats and to fi nd out if 
cAMP mediated CREB pathway is equally implicated in the 
disease pathogenesis or progression. It may perhaps be safe to 
further conclude that the benefi cial effects of the investigated 
test drug FSK may be due to its combined improved motor 
functions, pro-cognitive and to restore the energy levels as 
well as antioxidant and anti-infl ammatory defense system in 
6-OHDA model.
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